

sPHENIX Calorimeters

Anne M. Sickles December 10, 2015

sPHENIX Calorimeter System

this talk: how does want we want to measure drive the calorimeter system design?

large rates over a wide kinematic range!

physics requirements

- reconstruction of jets from ~ 20 70 GeV
 - EMCal & HCal with full, uniform acceptance over $|\eta| < 1$
 - essential jets are large objects in the calorimeter
 - \sim 5.5 $\lambda \rightarrow$ 95% energy containment
- good jet performance, both in pp & AA

jets in a heavy ion environment

- UE contribution subtracted with ATLAS-style iterative algorithm
- affects of underlying event become more pronounced at low p_T, larger jets and more central events

energy resolution 0.25 0.25

0.15

0.05

30

Determine set of seed jets Run jet reco algorithm on -R = 0.20.1x0.1 calorimeter cells 1st pass: towers in jet: 2^{nd} pass: jet $E_T > 20$ Determine v₂ for event - exclude towers within $\Delta \eta < 0.4$ Determine background E_T in η strips of seed jet - demodulate by v₂ - exclude towers within $\Delta R < 0.4$ of seed jet Subtract background from event Subtract background from jets tower-by-tower tower-by-tower - first remodulate background by v₂ - first remodulate background by v₂ Run jet reco algorithm Output: background subtracted reco jets of various R values

Hanks et al PRC 86 (2012) 024908

PYTHIA + Geant4, anti-k_T R=0.2 PYTHIA + Geant4, anti-k_T R=0.4

HIJING + PYTHIA + Geant4, anti-k R=0.2

HIJING + PYTHIA + Geant4, anti-k_ R=0.4

PYTHIA & HIJING in Geant4

p_{T,true} (GeV)

response to modified jets

difference in energy response to quark and gluon jets

- quark/gluon mix changes quickly at RHIC (also quenching effects)
- good for further study at sPHENIX

electrons

- electron identification: E/p matching
 - necessary to suppress comb. background under Y states

photons

- γ/π⁰ ratio > 15 GeV exceeds 1 in AuAu
- γ rates out to ~50 GeV
- segmentation of EMCal needs to be < size of γ clusters

EMCal: energy resolution requirements

- EMCal requirement: distinguish photons & electrons from UE
 - most stringent case: electrons from Y decay
 - ~5 GeV electrons
 - having the EMCal energy resolution about the same as the UE event contribution under the electron $\rightarrow \Delta E/E \sim 15\% / \sqrt{E}$
 - inner HCal can provide some help/confirmation

0-10% HIJING @ $\sqrt{s_{NN}}$ = 200 GeV energy in EMCal in 3x3 tower array

more: J. Huang's talk tomorrow

EMCal plan

- tungsten powder / scintillating fiber EMCal
 - 2.3 cm Moliere radius suitable for high multiplicity HI environment at a detector radius of 90cm
- $\Delta \eta x \Delta \phi = 0.024 \times 0.024 = ~25 \text{k towers}$
 - $X_0 = 7$ mm, $18X_0 = 12$ cm thick absorber
- provides the necessary 15%/√E energy resolution
- makes good use of the radial space inside the magnet
 - between the tracking and the inner HCal

two towers

EMCal plan

- projective in 2 demensions
 - fibers point back to the IP in φ & η
 - 1D projective production under control; 2D projective production process needs development
 - possible we'll only need φ projectivity
 - recent improvements to simulations improve e/h separation from initial studies
 - 2D will always have better performance, but production process still under development
- 1D/2D projectivity is a major decision point in the EMCal design

electron ID performance

pCDR AuAu simulations

updated AuAu simulations

physics requirement: 90:1 rejection at 70% electron efficiency, updated simulations provide some additional safety margin/higher electron efficiency

HCal concept

- two sections
 - 1λ between the EMCal and magnet
 - 3.5λ after magnet
- $\Delta \eta x \Delta \varphi = 0.1x0.1$
 - hadronic showers large
- steel absorber plates with scintillating tiles

2014 prototype

moving forward

stacking Illinois produced modules at BNL last week!

- prototyping: April 2016 at Fermilab
 - targeted toward $\eta = 0$
 - EMCal modules 1D projective
 - modules produced at Illinois & THP (outside company)

moving forward

- prototyping: November 2016 @ Fermilab
 - targeted toward high |η|
 - EMCal: decision point for 1D vs 2D projectivity
 - need to know if we can build it
 - need to know if we need it—simulations

moving forward

- great progress on electron identification targeted simulations
- over the next several months need to decide on 1D vs 2D projectivity for the EMCal
 - manpower challenge since it's in parallel with testbeam at Fermilab
- simulations: validate them with testbeam at Fermilab and update the physics performance of the calorimeters

summary

- many details I've left out
 - more dedicated talks tomorrow
 - EMCal (Craig Woody)
 - HCal (John Lajoie)
 - Electronics (Eric Mannel)
 - Simulations (Jin Huang)

we've made a lot of progress, but there are lots of ways remaining to contribute to calorimeters and their simulations, come talk to us!